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Abstract

In this paper the parametrically excited vibrations of an oscillator with strong cubic negative nonlinearity are analyzed.

The two-dimensional Lindstedt–Poincare perturbation technique applied for finding an approximate solution of linear

parametrically excited systems is extended for analyzing a strong nonlinear oscillator. Based on the solution of a nonlinear

differential equation with constant coefficients, an approximative solution is introduced. The transition curves and

transient surfaces along which periodic solutions exist are obtained. Their strong dependence on the initial conditions is

evident. To prove the analytical solution, the numerical experiment is done. For certain values initial conditions and

parameter values, the time history diagrams for the oscillator are plotted.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Parametrically excited systems are widely spread in many branches of physics and engineering. In
mechanical and elastic systems, parametrically excited vibrations occur due to time varying loads, especially
periodic ones. These vibrations appear in columns made of nonlinear elastic material [1], beams with a
harmonically variable length [2], beams with harmonic motion of their support [3], floating offshore structures
[4], parametrically excited pendulums [5], cables being towed by a submarine [6,7], etc. Parametric excitations
occur in electrostatically driven microelectro-mechanical oscillators [8], which is produced by fluctuating
voltages applied across comb drives. In practical engineering situations the properties of parametric
oscillations are widely used, for example, in the radio, the computer and laser engineering, in vibromachines
with special design [9], Paul trap mass spectrometers [10] and a simulator for proving the equivalence of inertia
and passive gravitational mass [11]. Parametric resonance has been well established in many areas of science,
including the stability of ships, the forced motion of a swing and Faraday surface wave patterns on water. The
highly sensitive mass sensor is studied as an in-plane parametrically resonant oscillator [12].

The simplest mathematical model of the system with a parametric periodic load is usually a linear Mathieu
differential equation. Due to the nonlinear properties of a real system, nonlinear terms are added to the
equation [13]. Usually, they are of a cubic type and the differential equation is transformed to the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Mathieu–Duffing equation [14]. To determine the combined effect of nonlinearities and parametric
excitations, numerous analytical techniques have been developed. Two classes of these techniques are
dominant. One class is based on the integral of energy and numerical integration [15]. The method is suitable
for obtaining the boundaries between bounded and unbounded solutions of the equation. The advantage of
the method is that it gives accurate stability charts, but the procedure is time consuming. If the energy integral
represents the Lyapunov function, then Lyapunov stability theory is also applicable. With this approach, it is
possible to determine qualitatively the general stability of the system, but one cannot determine qualitatively
the system response.

The second technique, which is much more developed, consists of the perturbation methods that are based
on the assumption that the variable-coefficient terms are small in some sense. The most widely applied is the
method of multiple scales [16]. The method is used to obtain solutions that are valid in neighborhoods close to
the transient curves. The method of multiple scales is extended for solving the stochastic Mathieu–Duffing
equation, too. The almost sure-stability criterion and instability criterion are determined [17].

Ng and Rand [6,7] investigated the Mathieu–Duffing equation using another perturbation method. They
showed that the averaging method is suitable for solving the deterministic Mathieu oscillator.

The method of strained parameters [16] is also an asymptotic analytical method, which is well suited for the
determination of the transient curves between stable and unstable solutions. This method yields a solution
which is valid right on the transient curve and does not yield a solution that is valid in the neighborhood close
to the transient curve. Following this method and based on Floquet theory, if one assumes that the solutions
have periods of p and 2p, then, the values of the parameters for which this assumption is true can be
determined [16].

All the previous techniques have been applied to solve differential equations with a small parametric
excitation and small nonlinearity. Zounes and Rand [18] considered the Mathieu–Duffing oscillator, assuming
that the parametric perturbation is small but the coefficient of the nonlinear term is positive and not necessary
small.

In this paper the Mathieu–Duffing equation with a small parametric excitation and strong negative
nonlinearity is investigated. The mathematical model corresponds to the parametrically excited oscillator with
a softening spring. The aim of the paper is to obtain the transient values of the parameters of the system which
lead the periodic solutions. The two-dimensional Lindstedt–Poincare perturbation technique is adopted for
solving the differential equation

€xþ ðdþ 2� cos 2tÞx� jx3 ¼ 0, (1)

with the initial conditions

xð0Þ ¼ X 0; _xð0Þ ¼ _X 0, (2)

where j is the parameter of nonlinearity and �51 is a small parameter. In contrast to the previous
perturbation treatments, the unperturbed system is nonlinear and the use of the elliptic functions, instead of
the trigonometric functions, which have been applied for the linear systems, is introduced. The regions of
stability and instability, i.e., the bounded and unbounded solutions of the Mathieu–Duffing equation are
discussed.

2. Solution procedure

The perturbation expansions of the function x and parameter d are introduced

xðt; �Þ ¼ x0ðtÞ þ �x1ðtÞ þ � � � , (3)

d ¼ d0 þ �d1 þ � � � . (4)

Substituting Eqs. (3) and (4) into Eqs. (1) and (2) and equating coefficients of similar powers of �, we obtain

€x0 þ d0x0 � jx3
0 ¼ 0,

€x1 þ d0x1 � 3jx2
0x1 ¼ �d1x0 � 2x0 cos 2t, (5)
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and

x0ð0Þ ¼ X 0; _xð0Þ ¼ _X 0,

x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0, ð6Þ

Eq. ð5Þ1 is a differential equation with strong cubic nonlinearity, which has a periodic solution of the form

x0 ¼ A0 snðo0tþ a0; k0Þ, (7)

where sn is the elliptic function [19] with the frequency o0 and the modulus k0 given respectively by

o2
0 ¼ d0 �

jA2
0

2
; k2

0 ¼
jA2

0

2ðd0 � ðjA2
0=2ÞÞ

, (8)

and A0 and a0 are arbitrary constants. The motion is periodic for A0o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2d0=j

p
.

The elliptic function sn has the period 4nKðkÞ, where KðkÞ is the complete elliptic integral of the first kind
[19] and n ¼ 0; 1; 2; . . . :

(1) For n ¼ 0 we obtain o0 ¼ 0. If the initial velocity is zero ð _X 0 ¼ 0Þ Eqs. (7) and (8) results in

x0 ¼ X 0 ¼ const. (9)

and

d0 ¼ jX 2
0. (10)

Because x0 is constant, Eq. (5) becomes an ordinary non-homogenous differential equations, of the form

€x1 � 2jX 2
0x1 ¼ �d1X 0 � 2X 0 cos 2t. (11)

Solving Eq. (11) with the initial conditions given in Eq. ð6Þ2, we obtain

x1 ¼
d1

2jX 0
�

d1
2jX 0

þ
X 0

2þ jX 2
0

 !
chðX 0t

ffiffiffiffiffiffi
2j

p
Þ þ

X 0

2þ jX 2
0

cos 2t. (12)

The periodic solution

x1 ¼ �
X 0

2þ jX 2
0

ð1� cos 2tÞ, (13)

exists for

d1 ¼ �
2jX 2

0

2þ jX 2
0

. (14)

Using Eqs. (4), (10) and (14), the transient curve in the first approximation is given by

d ¼ jX 2
0 1�

2�

2þ jX 2
0

 !
(15)

and along this curve the solution is

x ¼ X 0 �
�X 0

2þ jX 2
0

þ
�X 0

2þ jX 2
0

cos 2t. (16)

To confirm the correctness of the analytical procedure, the analytical result (16) is compared with the
numerical solution obtained by solving Eq. (1) with Eq. (15) for the initial conditions x0ð0Þ ¼ X 0 ¼ 0:1,
_xð0Þ ¼ 0. In Fig. 1 the time histories xðtÞ are plotted for X 0 ¼ 0:1, j ¼ 2 and various values of the small
parameter: � ¼ 0:01 (Fig. 1a) and � ¼ 0:1 (Fig. 1b). It is evident that during the initial time period the
difference between the analytical and numerical solutions is negligible.

(2) For the period 4KðkÞ the frequency is o0 ¼ 1 and

d0 ¼ 1þ
jA2

0

2
; k2

0 ¼
jA2

0

2
, (17)
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Fig. 1. The history diagrams x-t obtained analytically (xA) and numerically (xN) for the following parameter values j ¼ 2, xð0Þ ¼ 0:1,
_xð0Þ ¼ 0: (a) � ¼ 0:01, (b) � ¼ 0:1.
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where the arbitrary amplitude is (see Eqs. ð6Þ1 and (7))

A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ
_X
2

0

1� ðj=2ÞX 2
0

vuut . (18)

The initial phase a0 satisfies the relation

sn a0;
jA2

0

2

� �
¼

X 0

A0
. (19)

Using the transformation given in Ref. [20], relation (7) is transformed into

x0 ¼ A0
sn0C0D0 � cn0dn0S0

1� k2
0sn

2
0S

2
0

, (20)

where cn0 � cnðt; k0Þ, sn0 � snðt; k0Þ, dn0 � dnðt; k0Þ, S0 ¼ snða0; k0Þ, C0 ¼ cnða0; k0Þ, D0 ¼ dnða0; k0Þ.
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Substituting Eq. (20) into Eq. ð5Þ2, yields

€x1 þ 1þ
jA2

0

2

� �
x1 � 3jA2

0

ðsn0C0D0 � cn0dn0S0Þ
2

ð1� k2
0sn

2
0S2

0Þ
2

x1

¼ �d1A0
sn0C0D0 � cn0dn0S0

1� k2
0sn

2
0S

2
0

� 2A0
sn0C0D0 � cn0dn0S0

1� k2
0sn

2
0S2

0

cos 2t. ð21Þ

This equation is a linear parametrically excited differential equation. For the case when k2
051; i.e., jA2

0=251,
the elliptic functions are transformed to the harmonic functions

sn0 � sin t�
k2

4
cos tðt� sin t cos tÞ; cn0 � cos t�

k2
0

4
cos tðt� sin t cos tÞ,

dn0 � 1�
k2

2
sin2t. (22)

The simplification of expression (20) and the differential equation (21) with Eq. (22) gives

x0 ¼ A0ðC0D0 sin
ffiffiffiffi
D
p

t� S0 cos
ffiffiffiffi
D
p

tÞ

and

€x1 þ Dx1 � �1
S2
0 � C2

0D2
0

2
x1 cos 2tþ �1S0C0D0x1 sin 2t

¼ �d1A0ðC0D0 sin t� S0 cos tÞ � 2A0ðC0D0 sin t� S0 cos tÞ cos 2t, ð23Þ

where �1 is a new small parameter

�1 ¼ 3jA2
051, (24)

while

D ¼ 1þ
�1
6
ð1� 3S2

0 � 3C2
0D2

0Þ. (25)

At this point, the two-dimensional Lindstedt–Poincare expansion is introduced once more. The series
expansion with the small parameter �1:

d1 ¼ d10 þ �1d11 þ � � � ; x1 ¼ x10 þ �1x11 þ � � � , (26)

is substituted into Eq. (23). After separating the terms with the same order of the small parameter �1, the
following equations are obtained:

�01: €x10 þ Dx10 ¼ � d10A0ðC0D0 sin
ffiffiffiffi
D
p

t� S0 cos
ffiffiffiffi
D
p

tÞ

� 2A0ðC0D0 sin
ffiffiffiffi
D
p

t� S0 cos
ffiffiffiffi
D
p

tÞ cos 2
ffiffiffiffi
D
p

t, ð27Þ

�11: €x11 þ Dx11 ¼ � d11A0ðC0D0 sin
ffiffiffiffi
D
p

t� S0 cos
ffiffiffiffi
D
p

tÞ

þ
S2
0 � C2

0D
2
0

2
x10 cos 2

ffiffiffiffi
D
p

t� S0C0D0x10 sin 2
ffiffiffiffi
D
p

t, ð28Þ

where

ffiffiffiffi
D
p
� 1þ

�1
12
ð1� 3S2

0 � 3C2
0D2

0Þ. (29)

To ensure that x10 is periodic, the terms with sin
ffiffiffiffi
D
p

t and cos
ffiffiffiffi
D
p

t in Eq. (27) which lead to secular terms must
vanish. This is attainable either for

d10 ¼ �1 and A0 ¼ X 0; C0 ¼ 0, (30)
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or

d10 ¼ 1 and A0 ¼ _X 0; S0 ¼ 0. (31)

If d10 ¼ �1 and the amplitude and phase angle satisfy the relations A0C0D0 ¼ 0, A0S0 ¼ X 0, we obtain the
solution of Eq. (27) with the secular terms eliminated

x10 ¼
X 0

8D
ðcos

ffiffiffiffi
D
p

t� cos 3
ffiffiffiffi
D
p

tÞ, (32)

since the initial conditions are

x10ð0Þ ¼ 0; _x10ð0Þ ¼ 0. (33)

For d10 ¼ 1 and A0C0D0 ¼ _X 0, A0S0 ¼ 0, the solution of Eq. (27) yields

x10 ¼ �
_X 0

8D
ð3 sin

ffiffiffiffi
D
p

t� sin 3
ffiffiffiffi
D
p

tÞ. (34)

Substituting Eqs. (32) and (34) into Eq. (28) and eliminating the secular terms, we obtain

d11 ¼ 0 for A0 ¼ X 0 and C0 ¼ 0 (35)

and

d11 ¼ �
1

8D
for A0 ¼ _X 0 and S0 ¼ 0. (36)

Using Eqs. (4) (17), (26), (30) and (35) or Eq. (31) and (36), the transient curves in the first approximation are
obtained

d ¼ 1� �þ
jX 2

0

2
(37)

and

d ¼ 1þ �þ
j _X

2

0

2
1�

3�

4D

� �
. (38)

For the special case when the value of the initial deflection is equal to the initial velocity, i.e.,

�1 ¼ 3jA2
0 ¼ 3jX 2

0 ¼ 3j _X
2

0, (39)

the special forms of the transient curves are obtained

d ¼ 1þ
�1
6
� � (40)

and

d ¼ 1þ
�1
6
þ � 1�

�1
8ð1� ð�1=3ÞÞ

� �
. (41)

In Fig. 2 the transient surfaces in �1d� space are plotted. The transient values depend strongly on the coefficient
of nonlinearity and the initial conditions. This is a main difference in comparison to the linear systems
described by the Mathieu equation [16], whose transient values are independent of the initial conditions.
The dependence of the transient values on the initial conditions goes along with the general characteristic of
nonlinear systems that their dynamic properties are affected by the initial conditions. For the combinations of
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Fig. 2. The transient surfaces corresponding to the solution with the frequency o0 ¼ 1.
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parameter d, �1 and � defined by Eqs. (40) and (41), i.e. for those lying on the surfaces, the motion is periodic
with the period 4Kð

ffiffiffiffiffiffiffiffiffi
�1=6

p
Þ.

(3) For the period 2KðkÞ the frequency is o0 ¼ 2 and the solution of the differential equation (5)1 is

x0 ¼ A1
sn1C1D1 � cn1dn1S1

1� k2
1sn

2
1S

2
1

, (42)

where cn1 � cnð2t; k1Þ; sn1 � snð2t; k1Þ; dn1 � dnð2t; k1Þ, S1 ¼ snða1; k1Þ, C1 ¼ cnða1; k1Þ, D1 ¼ dnða1; k1Þ with
the modulus of the elliptic function and the parameter value

k2
1 ¼

jA2
1

8
; d10 ¼ 4þ

jA2
1

2
. (43)

The initial amplitude and phase satisfy the relations

A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ
_X
2

0

4� ðj=2ÞX 2
0

vuut ; sn a1;
jA2

1

8

� �
¼

X 0

A1
. (44)

Assuming that k2
151 and using the transformations of the elliptic into circular function (22), Eq. ð5Þ2 is

transformed into

€x1 þ 4D1x1 þ �1x1S1C1D1 sin 4
ffiffiffiffiffiffi
D1

p
t�

�1
2

x1ðS
2
1 � C2

1D2
1Þ cos 4

ffiffiffiffiffiffi
D1

p
t

¼ �d1A1ðC1D1 sin 2
ffiffiffiffiffiffi
D1

p
t� S1 cos 2

ffiffiffiffiffiffi
D1

p
tÞ � A1C1D1 sin 4

ffiffiffiffiffiffi
D1

p
t

þ A1S1ð1þ cos 4
ffiffiffiffiffiffi
D1

p
tÞ, ð45Þ

where

D1 ¼ 1þ
�1
24
ð1� 3C2

1D
2
1 � 3S2

1Þ. (46)
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Using the series expansion in Eq. (26) with respect to the small parameter �1, the differential equation for �01 is
obtained

€x10 þ 4D1x10 ¼ � d10A1ðC1D1 sin 2
ffiffiffiffiffiffi
D1

p
t� S1 cos 2

ffiffiffiffiffiffi
D1

p
tÞ

� A1C1D1 sin 4
ffiffiffiffiffiffi
D1

p
tþ A1S1ð1þ cos 4

ffiffiffiffiffiffi
D1

p
tÞ. ð47Þ

Eliminating the secular terms in Eq. (47) it is clear that

d10 ¼ 0 (48)

and the solution is

x10 ¼
A1S1

D1
1�

14

15
cos 2

ffiffiffiffiffiffi
D1

p
t�

1

15
cos 4

ffiffiffiffiffiffi
D1

p
t

� �
�

A1C1D1

15D1
ð2 sin 2

ffiffiffiffiffiffi
D1

p
t� sin 4

ffiffiffiffiffiffi
D1

p
tÞ, (49)

where ffiffiffiffiffiffi
D1

p
� 1þ

�1
48
ð1� 3C2

1D
2
1 � 3S2

1Þ. (50)

Substituting Eq. (49) into Eq. (45) and eliminating the secular terms, yields

d11 ¼ �
1

24D1
for A1 ¼

_X 0

2
and S1 ¼ 0 (51)

and

d11 ¼
1

24D1
for A1 ¼ X 0 and C1 ¼ 0. (52)

According to the previous considerations, the following two transient curves are obtained:

d ¼ 4þ
j _X

2

0

8
� �

j _X
2

0

32� 2j _X
2

0

(53)

and

d ¼ 4þ
jX 2

0

2
þ �

jX 2
0

8� 2jX 2
0

. (54)

The special case when the value of the initial deflection is twice the initial velocity and

�1 ¼ 3jA2
1 ¼ 3jX 2

0 ¼
3

4
j _X

2

0, (55)

gives the transient curves

d ¼ 4þ
�1
6
�

��1
24� 2�1

(56)

and

d ¼ 4þ
�1
6
þ

��1
24� 2�1

. (57)

In Fig. 3 the transient surfaces in �1d� space are shown. The transient values depend strongly on the values
of �1. It is evident that for the linear case when �1 ¼ 0 we obtain d ¼ 4, which is the well known critical value
for a linear system.
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Fig. 3. The transient surfaces corresponding to the solution with the frequency o0 ¼ 2.

Fig. 4. Parameter d�-plane for various values of �1: (a) �1 ¼ 0:6, (b) �1 ¼ 0:4, (c) �1 ¼ 0:2.
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Fig. 5. The history diagrams x-t for the points: (a) I, (b) II, (c) III, (d) IV shown in Fig. 4a.
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3. Numerical simulation

As a demonstration and check of the validity of the approximations in this paper, the theoretical predictions
are compared with the results from direct numerical integration.

Using Eqs. (15), (40), (41), (56) and (57), the parameter d�-planes for various values of �1 are plotted in
Fig. 4. For the values in the shaded regions the solution implies unbounded motion. For the values in the non-
shaded regions it is bounded. The higher the values of the parameter �1, the more the shaded regions are
translated to the right. This is because the parameter describing nonlinearity together with the initial
conditions cause the critical values of d to be higher than the corresponding value for the linear case [16]. Also,
the regions corresponding to unbounded solutions are wider if �1 is larger. Furthermore, for small positive
values of d a region of unbounded ones exists. This is the main difference in comparison to the linear
parametrically excited oscillator, for which there is a region of bounded motion in the small positive
neighborhood of the origin [16].

Choosing some points from the stability chart (see Fig. 4a, points I–VII), the numerical procedure is
carried out for j ¼ 2 and the initial conditions xð0Þ ¼ 0:3162, _xð0Þ ¼ 0 (Figs. 5 and 6). The parameters
corresponding to these points are: point I: e ¼ 0:1, d ¼ 0:08; point II: e ¼ 0, d ¼ 1:1; point III: e ¼ 0:4, d ¼ 1:1;
point IV: e ¼ 0:1, d ¼ 1:25 (Fig. 5); point V: e ¼ 0, d ¼ 4:1; point VI: e ¼ 1:5, d ¼ 4:1; point VII: e ¼ 0:3,
d ¼ 4:2 (Fig. 6). While Fig. 5 shows the time history diagrams, in Fig. 6 both time history diagrams and the
corresponding phase planes are plotted. The numerical results convey the results of the analytical analysis.
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Fig. 6. The history diagrams x–t and phase curves x– _x for j ¼ 2, xð0Þ ¼ 0:3162, _xð0Þ ¼ 0 for the points V–VII shown in Fig. 4a: (a), (b) V:

e ¼ 0, d ¼ 4:1; (c), (d) VI: e ¼ 1:5, d ¼ 4:1; (e), (f) VII: e ¼ 0:3, d ¼ 4:2.
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4. Conclusion

A first-order analytical solution of the Mathieu–Duffing differential equation has been obtained by using
the two dimensional Linstedt–Poincare perturbation method. The unperturbed equation includes strong
negative cubic nonlinearity, whose exact solution is given with Jacobi elliptic functions. The transition curves
along which the periodic solutions with period 2K and 4K exist, have been constructed. Based on the obtained
results, the following can be concluded:

1. The analytical results show that the nonlinearity significantly changes the characteristics of parametric
resonance and the presence of a negative cubic nonlinearity alters the dynamic behavior of the system.

2. The use of the elliptic functions instead of the trigonometric functions has a principle advantage since the
subharmonic resonances of all orders are accounted for.

3. The transient values are dependent on the initial conditions. In the special case when the value of j is
chosen to be zero, the transient curves are equivalent to those corresponding to the linear Mathieu equation. It
has been shown that any small deviations from those transition curves leads to the complete loss of periodicity.

4. Comparing the approximate analytical and numerical results it is shown that the results obtained for the
small values of � agree well during the initial time period.
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